Increased Lipolysis and Energy Expenditure in a Mouse Model with Severely Impaired Glucagon Secretion

نویسندگان

  • Phing-How Lou
  • Natalia Gustavsson
  • Yue Wang
  • George K. Radda
  • Weiping Han
چکیده

BACKGROUND Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca(2+)-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level. METHODOLOGY/PRINCIPAL FINDINGS We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice. CONCLUSIONS These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice.

Cyclic nucleotide phosphodiesterase 3B (PDE3B) has been suggested to be critical for mediating insulin/IGF-1 inhibition of cAMP signaling in adipocytes, liver, and pancreatic beta cells. In Pde3b-KO adipocytes we found decreased adipocyte size, unchanged insulin-stimulated phosphorylation of protein kinase B and activation of glucose uptake, enhanced catecholamine-stimulated lipolysis and insul...

متن کامل

Novel Agents for the Treatment of Type 2 Diabetes.

In Brief Impaired insulin secretion, increased hepatic glucose production, and decreased peripheral glucose utilization are the core defects responsible for the development and progression of type 2 diabetes. However, the pathophysiology of this disease also includes adipocyte insulin resistance (increased lipolysis), reduced incretin secretion/sensitivity, increased glucagon secretion, enhance...

متن کامل

Novel Agents for the Treatment of Type 2 Diabetes

Impaired insulin secretion, increased hepatic glucose production, and decreased peripheral glucose utilization are the core defects responsible for the development and progression of type 2 diabetes. However, the pathophysiology of this disease also includes adipocyte insulin resistance (increased lipolysis), reduced incretin secretion/sensitivity, increased glucagon secretion, enhanced renal g...

متن کامل

Effects of dipeptidyl peptidase IV inhibition on glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to fat in healthy males.

Fat is the most potent stimulus for glucagon-like peptide-1 (GLP-1) secretion. The aims of this study were to determine whether dipeptidyl peptidase IV (DPP-IV) inhibition would enhance plasma active incretin [glucose-dependent insulinotropic polypeptide (GIP), GLP-1] concentrations and modulate the glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to intraduo...

متن کامل

Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure.

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet beta cell via stimulation of insulin secretion and preservation and expansion of beta cell mass. We examined the importance of endogenous incretin receptors for control of glucose homeostasis through analysis of Glp1r(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011